Glucose-mediated cytoprotection in the gut epithelium under ischemic and hypoxic stress.
نویسندگان
چکیده
Single-layered intestinal epithelia play key roles in the maintenance of gut homeostasis and barrier integrity. Various types of epithelial cell death, including apoptosis, necrosis, and necroptosis, have been detected in ischemic and hypoxic stress conditions, thus resulting in bacterial translocation and gut-derived septic complications. Cytoprotective strategies, such as enteral glucose uptake, rescue intestinal epithelium from cell death after ischemic and hypoxic injury. Although glucose metabolism and energy production are generally considered to be the key factors in cytoprotection, the precise modes and sites of action have not been clarified. Our recent studies have demonstrated that energy restoration promotes crypt hyperplasia but does not prevent epithelial cell death under ischemic stress. On the other hand, glycolytic pyruvate prevents epithelial cells from undergoing apoptosis and necroptosis by scavenging free radicals in an ATP-independent manner. Distinct gut protective mechanisms involving ATP, pyruvate, glucose metabolic enzymes, and sodium-dependent glucose transporter activation are discussed here. Overall, glucose-mediated cytoprotection may be a universal mechanism that has evolved in epithelial cells for the maintenance of intestinal homeostasis. Enteral glucose supplementation is beneficial as a perioperative supportive therapy for the protection of gut barrier integrity.
منابع مشابه
Nitrite Anion Therapy Protects Against Chronic Ischemic Tissue Injury in db/db Diabetic Mice in a NO/VEGF-Dependent Manner
Nitrite anion has been demonstrated to be a prodrug of nitric oxide (NO) with positive effects on tissue ischemia/reperfusion injury, cytoprotection, and vasodilation. However, effects of nitrite anion therapy for ischemic tissue vascular remodeling during diabetes remain unknown. We examined whether sodium nitrite therapy altered ischemic revascularization in BKS-Lepr(db/db) mice subjected to ...
متن کاملHypoxic-ischemic encephalopathy in a young man due to tramadol overdose
Objective: Tramadol is a synthetic analgesic with two mechanisms. The opioid and non-opioid mechanisms are responsible for tramadol side effects. Non-opioid side effects of tramadol are due to the reuptake inhibitions of serotonin and norepinephrine. Some of the side effects include anaphylactoid reactions, CNS depression, hypoglycemia, hypotension, respiratory depression, seizures, and seroton...
متن کاملAdenosine, oxidative stress and cytoprotection.
Adenosine, a metabolite of ATP, serves a number of important physiological roles in the body. These actions contribute to sedation, bradycardia, vasorelaxation, inhibition of lipolysis and regulation of the immune system and are mediated, in part, through activation of three distinct adenosine receptor (AR) subtypes. To date, four receptor types have been cloned: A1, A2A, A2B and A3. It is beco...
متن کاملP 9: Neuoprotective Effect of Cannabinoid CB1 Receptor Antagonists Rimonabant and AM251 on Hypoxic Mouse Model of Brain Oxidative Stress
Introduction: The hypoxic state, in which experimental animals were subjected to an atmosphere of 5% O2 and %95 N2, has been used to screen agents for possible cerebral protection by measuring their ability to prolong survival time in mice exposed to hypoxia. Researchers showed that rimonabant and AM251 allosteric potentiate all but the β1 subunit containing GABAA receptors at nM...
متن کاملMipu1, a Novel Direct Target Gene, Is Involved in Hypoxia Inducible Factor 1-Mediated Cytoprotection
Mipu1 (myocardial ischemic preconditioning up-regulated protein 1), recently identified in our lab, is a novel zinc-finger transcription factor which is up-regulated during ischemic preconditioning. However, it is not clear what transcription factor contributes to its inducible expression. In the present study, we reported that HIF-1 regulates the inducible expression of Mipu1 which is involved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Histology and histopathology
دوره 32 6 شماره
صفحات -
تاریخ انتشار 2017